4 Right Triangles

Posted by doug
summary: 
4 right triangles in one animation, two time-like, two space-like.
description: 
It looks like a pinwheel, kind of. It is hard for me to process all this dynamic information. Four right triangles should be easy! Some simple issues: these are all along the same line in space. With practice, it is possible to follow one triangle through the origin to the other side, where time is positive. Look for the points where the blue ball merges with the green circle (only blue reaches the circle). Notice that the red events never take a step away from the origin. Spend some time looking at the shadows. At any giving time, there are only 2 triangles being animated.
command: 
./q_graph -box 1.3 -dir triangles -out t4 -command 'g_u1_n -1 .7 .2 0 2000 | q_x_scalar 1.23693' -color green -command 'constant_linear_motion 100 0 0 0 0 -1 0 0 0' -color red -command 'constant_linear_motion 100 0 0 0 0 -1 .7 .2 0' -color blue -command 'constant_linear_motion 100 -1 0 0 0 -1 .7 .2 0' -color yellow -command 'constant_linear_motion 100 0 0 0 0 1 0 0 0' -color red -command 'constant_linear_motion 100 0 0 0 0 1 -.7 -.2 0' -color blue -command 'constant_linear_motion 100 1 0 0 0 1 -.7 -.2 0' -color yellow -command 'constant_linear_motion 100 0 0.961522 0.274720 0 0.728009 0.961522 0.274720 0' -color purple -command 'constant_linear_motion 100 0 0 0 0 0.728009 0.961522 0.274720 0' -color blue -command 'constant_linear_motion 100 0 0 0 0 0 0.961522 0.274720 0' -color yellow -command 'constant_linear_motion 100 0 -0.961522 -0.274720 0 -0.728009 -0.961522 -0.274720 0' -color purple -command 'constant_linear_motion 100 0 0 0 0 -0.728009 -0.961522 -0.274720 0' -color blue -command 'constant_linear_motion 100 0 0 0 0 0 -0.961522 -0.274720 0' -color yellow
equation: 

4 triangles:
(0, 0, 0, 0), ( 1, 0, 0, 0), ( 1,-0.7,-0.2, 0)
(0, 0, 0, 0), (-1, 0, 0, 0), (-1, 0.7, 0.2, 0)
(0, 0, 0, 0), (0, 0.961, 0.274, 0), ( 0.728, 0.961, 0.274, 0)
(0, 0, 0, 0), (0,-0.961,-0.274, 0), (-0.728,-0.961,-0.274, 0)

Re: 4 Right Triangles

So the Maltese cross of triangles strikes again, this time from index card to animated! I take it the triangle in quadrant 1 is purely Euclidean, whist the one in quadrant 2 is Lorentian. The past light-cone and space-like intervals reflection, are products of symmetry.




""