# Quantum Mechanics

The 2 images on the right hand side of these animations may be a way to visually represent quantum mechanics. The wave function is the superposition of all possible states a system governed by a complex-valued wave function can be in. The story is complete, even if uncertain due to the complex numbers which are not a totally ordered set. The upper right image is literally a superposition of every frame that appears in the animation that is front and center. Below all that is possible is a random sampling of those what is possible. All that can be is contrasted with what happens to be, a core issue in the foundations of quantum mechanics.

But why must this be so? We can write complex valued equations which are accurate representations of measurements we make of Nature, yet those equations blissfully ignore if one collection of events could *cause* another set of event to occur. The equation in fact describes clusters of events which are independent of each other due to a spacelike separation. Such an equation is valid math. Yet to make it apply to Nature, we need to take the norm of the expression. When we take this step, the resulting expression is not a description of one event that appears after another as happens in classical physics. Instead the norm is the probability that an event will be seen at a location in spacetime.